Chat models
Chat models are language models that use a sequence of messages as inputs and return messages as outputs (as opposed to using plain text). These are generally newer models.
info
If you'd like to write your own chat model, see this how-to. If you'd like to contribute an integration, see Contributing integrations.
- OpenAI
- Anthropic
- Azure
- AWS
- Cohere
- NVIDIA
- FireworksAI
- Groq
- MistralAI
- TogetherAI
pip install -qU langchain-openai
import getpass
import os
os.environ["OPENAI_API_KEY"] = getpass.getpass()
from langchain_openai import ChatOpenAI
model = ChatOpenAI(model="gpt-4o-mini")
pip install -qU langchain-anthropic
import getpass
import os
os.environ["ANTHROPIC_API_KEY"] = getpass.getpass()
from langchain_anthropic import ChatAnthropic
model = ChatAnthropic(model="claude-3-5-sonnet-20240620")
pip install -qU langchain-openai
import getpass
import os
os.environ["AZURE_OPENAI_API_KEY"] = getpass.getpass()
from langchain_openai import AzureChatOpenAI
model = AzureChatOpenAI(
azure_endpoint=os.environ["AZURE_OPENAI_ENDPOINT"],
azure_deployment=os.environ["AZURE_OPENAI_DEPLOYMENT_NAME"],
openai_api_version=os.environ["AZURE_OPENAI_API_VERSION"],
)
pip install -qU langchain-google-vertexai
# Ensure your VertexAI credentials are configured
from langchain_google_vertexai import ChatVertexAI
model = ChatVertexAI(model="gemini-1.5-flash")
pip install -qU langchain-aws
# Ensure your AWS credentials are configured
from langchain_aws import ChatBedrock
model = ChatBedrock(model="anthropic.claude-3-5-sonnet-20240620-v1:0",
beta_use_converse_api=True)
pip install -qU langchain-cohere
import getpass
import os
os.environ["COHERE_API_KEY"] = getpass.getpass()
from langchain_cohere import ChatCohere
model = ChatCohere(model="command-r-plus")
pip install -qU langchain-nvidia-ai-endpoints
import getpass
import os
os.environ["NVIDIA_API_KEY"] = getpass.getpass()
from langchain_nvidia_ai_endpoints import ChatNVIDIA
model = ChatNVIDIA(model="meta/llama3-70b-instruct")
pip install -qU langchain-fireworks
import getpass
import os
os.environ["FIREWORKS_API_KEY"] = getpass.getpass()
from langchain_fireworks import ChatFireworks
model = ChatFireworks(model="accounts/fireworks/models/llama-v3p1-70b-instruct")
pip install -qU langchain-groq
import getpass
import os
os.environ["GROQ_API_KEY"] = getpass.getpass()
from langchain_groq import ChatGroq
model = ChatGroq(model="llama3-8b-8192")
pip install -qU langchain-mistralai
import getpass
import os
os.environ["MISTRAL_API_KEY"] = getpass.getpass()
from langchain_mistralai import ChatMistralAI
model = ChatMistralAI(model="mistral-large-latest")
pip install -qU langchain-openai
import getpass
import os
os.environ["TOGETHER_API_KEY"] = getpass.getpass()
from langchain_openai import ChatOpenAI
model = ChatOpenAI(
base_url="https://api.together.xyz/v1",
api_key=os.environ["TOGETHER_API_KEY"],
model="mistralai/Mixtral-8x7B-Instruct-v0.1",
)
model.invoke("Hello, world!")
Featured Providers
info
While all these LangChain classes support the indicated advanced feature, you may have to open the provider-specific documentation to learn which hosted models or backends support the feature.
Provider | Tool calling | Structured output | JSON mode | Local | Multimodal | Package |
---|---|---|---|---|---|---|
ChatAnthropic | ✅ | ✅ | ❌ | ❌ | ✅ | langchain-anthropic |
ChatMistralAI | ✅ | ✅ | ❌ | ❌ | ❌ | langchain-mistralai |
ChatFireworks | ✅ | ✅ | ✅ | ❌ | ❌ | langchain-fireworks |
AzureChatOpenAI | ✅ | ✅ | ✅ | ❌ | ✅ | langchain-openai |
ChatOpenAI | ✅ | ✅ | ✅ | ❌ | ✅ | langchain-openai |
ChatTogether |